
Steering quantum transitions between three crossing energy levels

S. S. Ivanov1 and N. V. Vitanov1,2

1Department of Physics, Sofia University, James Bourchier 5 Boulevard, 1164 Sofia, Bulgaria
2Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko chaussée 72, 1784 Sofia, Bulgaria

�Received 21 November 2007; published 5 February 2008�

We calculate the propagator and the transition probabilities for a coherently driven three-state quantum
system. The energies of the three states change linearly in time, whereas the interactions between them are
pulse shaped. We derive a highly accurate analytic approximation by assuming independent pairwise Landau-
Zener transitions occurring instantly at the relevant avoided crossings, and adiabatic evolution elsewhere.
Quantum interferences are identified, which occur due to different possible evolution paths in Hilbert space
between an initial and a final state. A detailed comparison with numerical results for Gaussian-shaped pulses
demonstrates a remarkable accuracy of the analytic approximation. We use the analytic results to derive
estimates for the half-width of the excitation profile, and for the parameters required for creation of a maxi-
mally coherent superposition of the three states. These results are of potential interest in ladder climbing in
alkali-metal atoms by chirped laser pulses, in quantum rotors, in transitions between Zeeman sublevels of a
J=1 level in a magnetic field, and in control of entanglement of a pair of spin-1 /2 particles. The results for the
three-state system can be generalized, without essential difficulties, to higher dimensions.
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I. INTRODUCTION

Whenever the energies of two discrete quantum states
cross when plotted against some parameter, e.g., time, the
transition probability is traditionally estimated by the famous
Landau-Zener �LZ� formula �1�. Although the LZ model in-
volves the simplest nontrivial time dependence—linearly
changing energies and a constant interaction of infinite dura-
tion, when applied to real physical systems with more so-
phisticated time dependences the LZ model often provides
more accurate results than expected. This feature �which has
not been fully understood yet�, and the extreme simplicity of
the LZ transition probability, have determined the vast popu-
larity of the LZ model, despite the availability of more so-
phisticated exactly soluble level-crossing models, e.g., the
Demkov-Kunike model �2� and its special case, the Allen-
Eberly-Hioe model �3�.

Numerous extensions of the LZ model to multiple levels
have been proposed. The exactly soluble multistate LZ mod-
els belong to two main types: single-crossing bow-tie models
and multiple-crossings grid models. In the bow-tie models,
where all energies cross at the same instant of time, analytic
solutions have been found for three �4� and N states �5–7�,
and when one of the levels is split into two parallel levels
�8�. In the grid models, a set of Na parallel equidistant linear
energies cross another set of Nb such energies �Demkov-
Ostrovsky model� �9–12�. For Nb=1 �or Na=1� the Demkov-
Ostrovsky model reduces to the Demkov-Osherov model
�13,14�. The cases of one �15� or two �16� degenerate levels
have also been solved. In the most general case of linear
energies of arbitrary slopes, the general solution is not
known, but exact results for some survival probabilities have
been derived �17–20�.

A variety of physical systems provide examples of mul-
tiple level crossings. Among them we mention ladder climb-
ing of atomic and molecular states by chirped laser pulses
�21,22�, harpoon model for reactive scattering �23�, and op-

tical shielding in cold atomic collisions �24�. Examples of
bow-tie linkages occur, for instance, in a rf-pulse controlled
Bose-Einstein condensate output coupler �25,26� and in the
coupling pattern of Rydberg sublevels in a magnetic field �6�.
A degenerate LZ model emerges when the transition between
two atomic levels of angular momenta Ja and Jb=Ja or Ja�1
is driven by linearly chirped laser fields of arbitrary
polarizations �15,16�.

A general feature of all soluble nondegenerate multilevel
crossing models is that each transition probability Pm→n be-
tween states �m and �n is given by a very simple expression,
as in the original LZ model, although the derivations are not
trivial. In the grid models, in particular, the exact probabili-
ties Pm→n have the same form �products of LZ probabilities
for transition or no-transition applied at the relevant cross-
ings� as what would be obtained by naive multiplication of
LZ probabilities while moving across the grid of crossings
from �m to �n, without accounting for phases and interfer-
ences. Quite surprisingly, interferences between different
paths to the same final state, a multitude of which exist in the
grid models, are not visible in the final probabilities.

In this paper we develop an analytic description of a
three-state model wherein the three energies change linearly
in time, with distinct slopes, thus creating three separate
level crossings. This system is particularly convenient for it
presents the opportunity to investigate quantum interference
through different evolution paths to the same final state, and
in the same time, it is sufficiently simple to allow for an
�approximate� analytic treatment; for the latter we use se-
quential two-state LZ and adiabatic-following propagators.
This system is also of practical significance for it occurs in
various physical situations, for instance, in transitions be-
tween magnetic sublevels of a J=1 level �26�, in chirped-
pulse ladder climbing of alkali-metal atoms �27�, in
rotational ladder climbing in molecules �28�, and in entangle-
ment of a pair of spin-1 /2 particles �29�. The results provide
analytic estimates of all nine transition probabilities in this
system. We do establish quantum interferences and estimate
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the amplitude and the frequency of the ensuing oscillation
fringes, as well as the conditions for their appearance. The
analytic results also allow us to prescribe explicit recipes for
quantum state engineering, for example, to create an equal,
maximally coherent superposition of the three states.

This paper is organized as follows. In Sec. II we provide
the basic equations and definitions and define the problem. In
Sec. III we derive the propagator, the transition probabilities
and the validity conditions. In Sec. IV we compare our ana-
lytical approximation to numerical simulations. Then in Sec.
V we demonstrate various applications of the analytics. In
Sec. VI we compare our model with the exactly soluble
Carroll-Hioe bowtie model in the limit of vanishing static
detuning. Finally, we discuss the conclusions in Sec. VII.

II. DEFINITION OF THE PROBLEM

A. Description of the system

We consider a three-state system driven coherently by a
pulsed external field, with the rotating-wave approximation
�RWA� Hamiltonian �in units �=1�

H�t� = �
�0 + At

1

2
�12�t� 0

1

2
�12�t� 0

1

2
�23�t�

0
1

2
�23�t� �0 − At

� . �1�

The diagonal elements are the �diabatic� energies of the three
states, the second of which is taken as the zero reference
point without loss of generality. �0 is a static detuning, and
�At are the linearly changing terms. To be specific, we shall
use the language of laser-atom interactions, where the differ-
ence between each pair of diagonal elements is the detuning
for the respective transition: the offset of the laser carrier
frequency from the Bohr transition frequency. The pulse-
shaped functions �12�t� and �23�t� are the Rabi frequencies,
which quantify the field-induced interactions between each
pair of adjacent states, �1↔�2 and �2↔�3, respectively.
Each of the Rabi frequencies is proportional to the respective
transition dipole moment and the laser electric-field enve-
lope. As evident from the zeroes in the corners of the Hamil-
tonian �1� we assume that the direct transition �1↔�3 is
forbidden, as it occurs in free atoms when �1↔�2 and
�2↔�3 are electric-dipole transitions.

The probability amplitudes of our system C�t�
= �C1�t� ,C2�t� ,C3�t��T satisfy the Schrödinger equation

iĊ�t� = H�t�C�t� , �2�

where the overdot denotes a time derivative.
Without loss of generality, the couplings �12�t� and �23�t�

are assumed real and positive and, for the sake of simplicity,
with the same time dependence. For the time being the de-
tuning �0 and the slope A are assumed to be also positive

�0 � 0, A � 0; �3�

we shall consider the cases of negative �0 and A later on.
With the assumptions above, the crossing between the diaba-
tic energies of states �1 and �2 occurs at time t−=−�, where
�=�0 /A, between �2 and �3 at time t+=�, and the one be-
tween �1 and �3 at time t0=0.

Figure 1 plots diabatic and adiabatic energies vs time for
a Gaussian-shaped laser pulse. We use �k and �k to denote
diabatic and adiabatic states, respectively. The objective of
this paper is to find analytical expressions for the evolution
matrix and for the transition probabilities between different
diabatic states.

B. Implementation

The Hamiltonian �1� appears naturally in a number of
specific problems of interest in time-dependent quantum dy-
namics of simple systems. The first example is ladder climb-
ing of electronic energy states in some alkali-metal atoms,
for instance, in rubidium �27�. A linearly chirped laser pulse
couples simultaneously both transitions 5s-5p and 5p-6s. If
the carrier frequency of the pulse is tuned on two-photon
resonance with the 5s-6s transition, then the intermediate
state 5p remains off resonance, by a detuning �, which leads
to the “triangle” linkage pattern in Fig. 1. The couplings
�12�t� and �23�t� are the Rabi frequencies of the two transi-
tions, which may be different �because of the different tran-
sition dipole moments� but have the same time dependence
since they are induced by the same laser pulse.

A second example is found in rf transitions between the
three magnetic sublevels m=−1,0 ,1 of a level with an an-
gular momentum J=1 in an atom trapped in a magneto-
optical trap. The rf pulse provides the pulsed coupling be-
tween the m=−1 and m=0 sublevels, and also between the
m=0 and m=1 sublevels. The trapping magnetic field causes
Zeeman shifts in the magnetic sublevels m=−1 and 1 in dif-
ferent directions but it does not affect the m=0 level �26�.
This linkage pattern is an example of a bowtie level crossing
�4–7�. If a quadratic Zeeman shift is taken into account, then
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FIG. 1. �Color online� Diabatic and adiabatic energies vs time
for a Gaussian-shaped laser pulse. The labels denote the respective
diabatic and adiabatic states.
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the sublevels m=−1 and 1 will be shifted in the same direc-
tion, which will break the symmetry of the bowtie linkage
and will create the “triangle” pattern of Fig. 1.

A third example is found in quantum rotors, for instance,
in rotational ladder climbing in molecules by using a pair of
chirped ultrashort laser pulses �28�. The energy slope is due
to the laser chirp, and the static detuning �0 arises due to the
rotational energy splitting. If the laser pulse duration is cho-
sen appropriately then only three rotational states will be
coupled, with their energies forming the “triangle” pattern of
Fig. 1.

The fourth example is the entanglement between two
spin-1 /2 particles interacting with two crossed magnetic
fields, a linear field along one axis and a pulsed field along
another axis �29�. The role of the static detuning �0 is played
by the spin-spin coupling constant. Three of the four collec-
tive states form a chain, which has exactly the “triangle”
linkage pattern of Fig. 1. In this system, states �1 and �3
correspond to the product states �↓��↓� and �↑��↑�, whereas
state �2 is the entangled state ��↓ ��↑ �+ �↑ ��↓ �� /	2.

III. EVOLUTION MATRIX

An exact solution of the Schrödinger equation �2� for the
Hamiltonian �1� is not known. We shall derive an approxi-
mation, which is most conveniently obtained in the adiabatic
basis.

A. Adiabatic picture

The adiabatic states are defined as the eigenvectors �k�t�
�k=1,2 ,3� of the instantaneous Hamiltonian H�t�. The cor-
responding adiabatic amplitudes A�t�= �A1�t� ,A2�t� ,A3�t��T

and the diabatic ones C�t� are related as

C�t� = R�t�A�t� , �4�

where R�t� is an orthogonal �because H�t� is real� transfor-
mation matrix, R−1�t�=RT�t�, whose columns are the adia-
batic states �k �k=1,2 ,3�, with �1 having the lowest energy
and �3 the highest energy. As we are only interested in the
populations at infinite times, we need only R��	�, rather
than the explicit function R�t�. R��	� can be easily ob-
tained using the asymptotic behavior of H�t� at infinite times

R�− 	� = �1 0 0

0 1 0

0 0 1
�, R�+ 	� = �0 0 1

0 1 0

1 0 0
� . �5�

The Schrödinger equation in the adiabatic basis reads

iȦ�t� = HA�t�A�t� , �6�

with HA�t�=RT�t�H�t�R�t�− iRT�t�Ṙ�t� or

HA�t� = � 
1�t� − i�12�t� − i�13�t�
− i�21�t� 
2�t� − i�23�t�
− i�31�t� − i�32�t� 
3�t�

� , �7�

where the nonadiabatic coupling between the adiabatic states
�k�t� and �l�t� is

�kl�t� = 
�k�t���̇l�t�� = − �lk�t� . �8�

B. Assumptions

Our approach is based on two simplifying assumptions.
First, we assume that appreciable transitions take place only
between neighboring adiabatic states �1�t�↔�2�t� and
�2�t�↔�3�t�, but not between states �1�t� and �3�t�, because
the energies of the latter pair are split by the largest gap �see
Fig. 1�. Second, we assume that the nonadiabatic transitions
occur instantly at the corresponding avoided crossings and
the evolution is adiabatic elsewhere. This allows us to obtain
the evolution matrix in the adiabatic basis by multiplying
seven evolution matrices describing either LZ nonadiabatic
transitions or adiabatic evolution.

C. Evolution matrix in the adiabatic basis

The adiabatic evolution matrix UA�	 ,−	� is most conve-
niently determined in the adiabatic interaction representation,
where the diagonal elements of HA�t� are nullified. The
transformation to this basis reads

A�t� = M�t,t0�B�t� , �9�

where

M�t,t0� = �e−i�1�t,t0� 0 0

0 e−i�2�t,t0� 0

0 0 e−i�3�t,t0� � , �10a�

�k�t,t0� = �
t0

t


k�t��dt�, �10b�

and t0 is an arbitrary fixed time. The Schrödinger equation in
this basis reads

iḂ�t� = HB�t�B�t� , �11�

with

HB�t� = − i� 0 �12e
i�12�t,t0� �13e

i�13�t,t0�

�21e
i�21�t,t0� 0 �23e

i�23�t,t0�

�31e
i�31�t,t0� �32e

i�32�t,t0� 0
� ,

�12�

where �kl�t , t0���k�t , t0�−�l�t , t0�. In this basis the propa-
gator for adiabatic evolution is the identity matrix.

The LZ transitions at the crossings at times −� ,0 ,� are
described by the transition matrices �30�

ULZ�− �� = �
	q−e−i
− − 	p− 0

	p−
	q−ei
− 0

0 0 1
� , �13a�

ULZ�0� = �1 0 0

0 	q0e−i
0 − 	p0

0 	p0
	q0ei
0

� , �13b�
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ULZ��� = �
	q+e−i
+ − 	p+ 0

	p+
	q+ei
+ 0

0 0 1
� , �13c�

where p� ��=−,0 , + � is the LZ probability of nonadiabatic
transition and q� is the no-transition probability at the cross-
ings at times −� ,0 ,�,

p� = e−�a�
2
, q� = 1 − p�. �14�

Here

a− = �12�− ��/�2A�1/2, �15a�

a0 = �eff�0�/2A1/2, �15b�

a+ = �23���/�2A�1/2, �15c�


� = arg ��1 − ia�
2� +

�

4
+ a�

2�ln a�
2 − 1� , �15d�

where �eff�0� is the effective coupling between states �1 and
�3 at crossing time t=0; it is determined by the splitting
between the adiabatic curves 
2�t� and 
3�t�,

�eff�0� = 
2�0� − 
3�0� =
1

2
�− �0 + 	�0

2 + 2�0
2� . �16�

The propagator in the adiabatic basis reads

UA�	,− 	� = M�	,��ULZ���M��,0�ULZ�0�

�M�0,− ��ULZ�− ��M�− �,− 	� . �17�

D. Propagator and transition probabilities
in the diabatic basis

Below we present the diabatic propagator in an explicit
form. For simplicity, we assume equal couplings

�12�t� = �23�t� = ��t� , �18�

although our approach is valid in the general case. This con-
straint is not applicable for the ladder climbing system, dis-
cussed in Sec. II B, where the couplings are naturally differ-
ent due to the different transition dipole moments, but is still
valid for the other systems discussed. Then �kl�0,−t�
=�kl�t ,0�, a+=a−=a, 
+=
−=
, p+= p−= p, and q+=q−=q.

We find the propagator in the original diabatic basis by
using Eqs. �4�, �5�, and �17�, as

U�	,− 	� = R�	�UA�	,− 	�RT�− 	�

or, explicitly,

U�	,− 	� = � ei�1+i�3	pp0 ei
+i�2+i�3	qp0 ei
0+2i�3	q0

e−i
−i�1+i�2	pq + ei
−i
0+i�1+i�2	pqq0 − e−2i�1+2i�2p + e2i
−i�0+2i�2q	q0 − ei
+i�2+i�3	qp0

e−2i
q − e−i
0+2i�1p	q0 − e−i
−i�1+i�2	pq − ei
−i
0+i�1+i�2	pqq0 ei�1+i�3	pp0

� , �19�

with �1=�12�� ,0�, �2=�12�	 ,0�, �3=�13�	 ,0�. The transition probability matrix, i.e., the matrix of the absolute squares of
the elements of the propagator �19�, reads

P = � pp0 qp0 q0

qp + pq0q + 2qp	q0 cos � p2 + q2q0 − 2qp	q0 cos � qp0

q2 + q0p2 − 2qp	q0 cos � qp + pq0q + 2qp	q0 cos � pp0
� , �20�

where

� = 2
 − 
0 + 2�1. �21�

The element at the mth row and the nth column of the
matrix �20� is the transition probability Pn→m, that is the
population of state m at infinite time, when the system starts
in state n in the infinite past. The survival probabilities P1→1
and P3→3 coincide with the exact expressions conjectured �7�
and derived exactly for constant couplings �17,19� earlier.

In Eq. �20� we recognize interference terms, which arise
because of the availability of two alternative propagating
paths in the Hilbert space. There is also a symmetry with
respect to the skew diagonal due to the equal couplings be-
tween neighboring states �Eq. �18�� and the equal �in magni-

tude� slopes of the energies of states �1 and �3 �Eq. �1��.

E. Conditions of validity

As already stressed, our approach presumes that the nona-
diabatic transitions occur in well-separated confined time in-
tervals. This means that the characteristic transition times are
shorter than the times between the crossings, or ttransition��.
The transition times for diabatic ��2�A� and adiabatic
��2�A� regimes are �31�

ttransition 
 	4�/A, diabatic regime, �22a�

ttransition 
 2�/A, adiabatic regime. �22b�

This leads to the following conditions for validity:
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�0 � 	4�A, diabatic regime, �23a�

�0 � 2�, adiabatic regime. �23b�

We shall demonstrate that the LZ-based approximation �20�
outperforms its formal conditions of validity �23� and is valid
beyond the respective ranges.

F. Case of �0�0 and/or A�0

Above we assumed that �0�0 and A�0. Now we con-
sider the cases �0�0 and A�0. We assume that the cou-
plings are even functions, ��−t�=��t�.

Negative static detuning ��0�0�. The Schrödinger equa-
tion for the propagator U��0 ; t , ti� is

i
�

�t
U��0;t,ti� = H��0,t�U��0;t,ti� . �24�

By changing the signs of �0, t and ti in Eq �24�, we obtain
the same equation, but with the ��t� replaced by −��t� �see
Eq. �1��. It is easy to see that the change of sign of ��t� is
equivalent to the transformation U→U�=QUQ, where Q is
the diagonal matrix Q=diag�1,−1,1�. Hence we find

i
�

�t
U��− �0;− t,− ti� = H��0,t�U��− �0;− t,− ti� . �25�

Because the initial condition for U��0 ; t , ti� and
U��−�0 ;−t ,−ti� at t= ti→−	 is the same,

U��0;− 	,− 	� = U��− �0;	,	� = I , �26�

we conclude that U��0 ; t , ti�=U��−�0 ;−t ,−ti�; hence

U�− �0;	,− 	� = QU��0;− 	,	�Q = QU��0;	,− 	�†Q .

�27�

Therefore

Pm→n�− �0� = Pn→m��0� �m,n = 1,2,3� . �28�

Negative chirp rate �A�0�. We notice that H11�A�
=H33�−A�, i.e. the change of sign of A is equivalent to
exchanging the indices 1 and 3. Hence the probabilities for
A�0 are obtained from these for A�0 using the relation

Pm→n�− A� = P4−m→4−n�A� �m,n = 1,2,3� . �29�

IV. COMPARISON OF ANALYTICAL AND
NUMERICAL RESULTS

Below we compare our analytical approximation with nu-
merical simulations. We take for definiteness the couplings in
Eq. �1� to be Gaussians, ��t�=�0e−t2/T2

.
Figure 2 shows the nine transition probabilities vs the

static detuning �0. An excellent agreement is observed be-
tween analytics and numerics, which are barely distinguish-
able. This agreement indicates that the dynamics is indeed
driven by separated level-crossing transitions of LZ type.
The analytic approximation �20� is clearly valid beyond its
formal range of validity, defined by conditions �23�, which

suggest ��0��35 /T for the parameters in this figure. The
figure also demonstrates that the detuning can be used as a
control parameter for the probabilities in wide ranges.

For �0�0 the five probabilities on the first row and the
last column vary smoothly, in agreement with the analytic
prediction. The two-photon probability P3→1 vanishes rap-
idly with �0, as expected, at a much faster pace than the
other probabilities. The other four probabilities P1→2, P1→3,
P2→2, and P2→3 exhibit oscillations, in agreement with the
analytic prediction, due to the existence of two alternative
paths of different length from the initial to the final state �see
Fig. 1�, with an ensuing interference. It is noteworthy that
these oscillations, due to path interference, are not particu-
larly pronounced, which might be a little surprising at first
glance. However, a more careful analysis reveals that when a
control parameter is varied, such as the static detuning �0
here, it changes not only the relative phase along the two
paths �which causes the oscillations�, but also the LZ prob-
abilities p� and q� ��=−,0 , + �. Indeed, as �0 increases, we
have p�→1 because the crossings at times �� move away
from the center of the pulses and �����→0. These prob-
abilities affect both the average value of Pm→n and the oscil-
lation amplitude, with Pm→n tending eventually to either 0 or
1 for large �0, while the oscillation amplitude �which is pro-
portional to p�� is damped.

Similar conclusions apply to the case of �0�0 because of
the symmetry property �28�. It is easy to see from here that
the survival probabilities Pn→n �n=1,2 ,3� are symmetric vs
�0, as indeed seen in Fig. 2.

Figure 3 displays the transition probabilities vs the chirp
rate A. An excellent agreement is again observed between
analytics and numerics. We have verified that the analytic
approximation �20� is valid well beyond its formal range of
validity conditions �23�, which suggest �A��70 /T2 for this
figure; a wider range is not shown because our intention here
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FIG. 2. �Color online� The transition probabilities Pm→n for the
transition m→n vs the detuning �0 for A=100 /T2 ,�0=10 /T. Each
frame compares the numerical �dashed red� and analytical �solid
blue� results.
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is to show the small-A range that exhibits interference pat-
terns. As with the static detuning in Fig. 2, this figure dem-
onstrates the symmetry with respect to the sign inversion of
A, derived in Eq. �29�: the change A→−A is equivalent to
the exchange of the indices 1 and 3. The observed additional
symmetry P2→1� P3→2 and P1→2� P2→3 is a consequence
from the assumptions of equal Rabi frequencies and equal �in
magnitude� slopes of the energies of states �1 and �3. The
figure also shows that, with the exception of the survival
probabilities Pn→n �n=1,2 ,3�, all other probabilities are
asymmetric vs the chirp rate A, unlike the two-state level-
crossing case. For A�0, as for �0�0 in Fig. 2, oscillations
are observed in the four probabilities in the lower left corner
but not for the probabilities in the top row and the right
column. On the contrary, for A�0, oscillations are observed
only in the four probabilities in the top right corner. As dis-
cussed in regard to Fig. 2, the observation of these oscilla-
tions is in full agreement with their interpretation as resulting
from interference between two different evolution paths to
the relevant final state.

Similar to the static detuning �0, the energy slope A can
be used as a control parameter because it affects the prob-
abilities considerably. Around the origin �A=0� the system is
in adiabatic regime, while for large �A� it is in diabatic re-
gime. For instance, when the system is initially in �1, around
the origin �A=0� the population flows mostly into state �3,
following the adiabatic state �1�t�. On the contrary, for large
A it eventually returns to �1 �not visible for the chirp range
in Fig. 3�.

Diabatic and adiabatic regimes are easy to identify also in
Fig. 4, where the nine probabilities are plotted vs the peak
Rabi frequency �0, which is another control parameter. Con-
sider our system initially prepared in state �1. For weak cou-
plings the system evolves diabatically and therefore it is
most likely to end up in the same state �1. As the couplings

increase, the system switches gradually from diabatic to
adiabatic evolution; for strong couplings the evolution pro-
ceeds along the adiabatic state �1�t�, and we observe nearly
complete population transfer to state �3.

Returning to the issue of oscillations, such are barely seen
in Fig. 4. As discussed in relation to Fig. 2, a varying control
parameter changes, besides the relative phase of the interfer-
ing paths, also the probabilities p� and q�, which eventually
acquire their asymptotic values of 0 or 1; in these limits the
oscillations vanish. The probabilities p+ and p−, in particular,
depend on the peak Rabi frequency �0 much more sensi-
tively than on the static detuning �0 and the energy slope A;
consequently, clear oscillations are seen vs �0 and A, but not
vs �0, because the dependence of p+ and p− on �0 is stron-
gest �essentially Gaussian�, and hence the approach to the
asymptotic values of the probabilities is fastest.

V. APPLICATIONS OF ANALYTICS

In this section we shall use our analytic approximation for
the transition probabilities �20� to derive several useful prop-
erties of the triple-crossing system.

A. Analytical linewidth

We begin by deriving approximate expressions for the
Rabi frequency required to reach 50% population in the nth
state for the transition m→n. Simple expressions are found
for the transition 3→1,

�1/2 = 2	2A ln 2 + �0
	�A ln 2

�
, �30�

and for the transitions 1→1 and 3→3,
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FIG. 3. �Color online� The transition probabilities Pm→n for the
transition m→n vs the energy slope A for �0=30 /T ,�0=10 /T.
Each frame compares the numerical �dashed red� and analytical
�solid blue� results.
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FIG. 4. �Color online� The transition probabilities Pm→n for the
transition m→n vs the Rabi frequency �0 for �0=10 /T, A
=33 /T2. Each frame compares the numerical �dashed red� and ana-
lytical �solid blue� results. The vertical dashed lines for P1→1, P3→3

and P3→1 show the values �1/2 of the Rabi frequency for half
population in the relevant states, predicted by our model, Eqs. �30�
and �31�.
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�1/2 =
2

�� + 4�
�2A��� + 4�ln 2

�
− ��0

2

+ ��0	�0
2 +

A��� + 4�ln 2

�
�1/2

, �31�

where �=exp�2�0
2 /A2�. These values are indicated by verti-

cal lines in Fig. 4 and are seen to be in excellent agreement
with the exact values.

B. Creation of superpositions

If we prepare our system initially in state �1 and use
A�0, or in state �3 and use A�0, it is possible to determine
by means of our analytical model values of �0, A and �0, so
that we achieve arbitrary preselected populations at the end.
For example, for a maximally coherent superposition state,
i.e., P1= P2= P3= 1

3 , we need p= 1
2 and p0= 2

3 . This yields the
following set of equations for �0, �0, and A:

1

2
e2�0

2/A2
ln 2 − �0	� ln �3/2�

A
− 2 ln �3/2� = 0, �32a�

�0 =	2A ln 2

�
e�0

2/A2
. �32b�

An example is shown in Fig. 5 where the three final prob-
abilities P3→1, P3→2, and P3→3 are plotted versus the chirp
rate A. The three probabilities cross �indicating the creation
of a maximally coherent superposition state� approximately
at the value predicted by Eqs. �32a� and �32b�, shown by the
vertical line.

VI. COMPARISON WITH THE EXACTLY SOLUBLE
CARROLL-HIOE MODEL FOR �0=0

For �0=0 and constant couplings, the Hamiltonian �1�
allows for an exact solution—this is the Carroll-Hioe �CH�

bowtie model �4�. The transition probability matrix for the
CH model reads

PCH = � pc
2 2pc�1 − pc� �1 − pc�2

2pc�1 − pc� �1 − 2pc�2 2pc�1 − pc�
�1 − pc�2 2pc�1 − pc� pc

2 � , �33�

where

pc = e−�a2/2, a = �/	2A . �34�

We use this exact result as a reference for the �0=0 limit
of our approximate method, applied for constant coupling
��t�=�=const. We emphasize that taking this limit is an
abuse of the method because in the derivation we have as-
sumed that the crossings are separated, which has justified
the multiplication of propagators. Nonetheless, it is curious
and instructive to push our approximation to this limit. For
�0=0 the LZ parameters are a�=� /	2A=a and a0=a /2.
Therefore we have p0

4= pc
2= p.

Figure 6 presents a comparison between the exact Carroll-
Hioe solution �33� and our approximate solution �20�. Quite
astonishingly, our approximate solution is not only qualita-
tively correct but it is even in a very good quantitative agree-
ment with the exact solution; we witness here yet another LZ
surprise where our LZ-based model outperforms expecta-
tions in a limit where it should not be adequate.

The observed feature of our approximate solution can be
explained by examining the asymptotics of the approximate
probabilities �20� and the exact CH values �33� for a�1 and
a�1. For a�1 the approximation �20� and the CH solution
�33� read, up to O�a4�, respectively
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FIG. 5. �Color online� The final populations of states �1, �2, and
�3 vs the chirp rate A for fixed �0=100 /T and �0=36.2 /T, pro-
vided the system is initially in state �3. The three curves cross at
about A
74.5 /T2, indicating the creation of a maximally coherent
superposition with populations P1= P2= P3=1 /3, which is very
close to the solution of Eqs. �32a� and �32b�, A=73.6 /T2, shown
with a vertical dashed line.
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FIG. 6. �Color online� Comparison of the probabilities �33� in
the exactly soluble Carroll-Hioe model �dashed red line� with our
approximate solution �20� �solid blue line� for �0=0 as functions of
the chirp rate A. Here �=1 /T.
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P � �1 − 5�a2/4 �a2 �a2/4
�a2 1 − 2�a2 �a2

�a2/4 �a2 1 − 5�a2/4
� , �35a�

PCH � �1 − �a2 �a2 0

�a2 1 − 2�a2 �a2

0 �a2 1 − �a2 � . �35b�

For a�1 they read, up to O�e−�a2
�, respectively,

P � �0 e−�a2/4 1 − e−�a2/4

0 1 − e−�a2/4 e−�a2/4

1 0 0
� , �36a�

PCH � � 0 2e−�a2/2 1 − 2e−�a2/2

2e−�a2/2 1 − 4e−�a2/2 2e−�a2/2

1 − 2e−�a2/2 2e−�a2/2 0
� .

�36b�

Equations �35a� and �35b� demonstrate that our approxi-
mate solution �20� reproduces well, for some probabilities
even exactly, the correct small-a asymptotics, which corre-
sponds to the large-A ranges in Fig. 6. The reason is that the
small-a �diabatic� regime corresponds to weak coupling; in
the perturbative regime the presence of level crossings, let
alone their distribution in time, is less significant. In the
large-a �adiabatic� regime the crossings become very impor-
tant and definitive for the dynamics. Then Eq. �36a� deviates
from the correct asymptotics �36b�, but still has the correct
asymptotic values for a→	. The correct, or nearly correct,
small-a and large-a asymptotics of our approximate solution
�20� explain its surprising overall accuracy in Fig. 6.

VII. DISCUSSION AND CONCLUSIONS

We have developed an approximate analytical model that
describes the time-dependent dynamics of a quantum system
with three states, which have linearly changing energies of
different slopes and are coupled with pulse-shaped interac-
tions. Our approach is based upon the two-state LZ model,
i.e., we assume independent pairwise transitions between
neighboring states, described by the LZ model. We have per-
formed detailed comparison of our analytic approximation
with numerical simulations, versus all possible interaction
parameters and for all nine transition probabilities, which has
revealed a remarkable accuracy, not only in smooth features,
but also in describing detailed interference patterns. This ac-
curacy shows that indeed, the physical mechanism of the
three-state dynamics is dominated by separated pairwise LZ
transitions, even when the crossings are too close to each
other.

We have derived the formal conditions of validity of our
LZ approach, Eqs. �23�, using the concept of transition time.
However, a comparison with numeric simulations has re-
vealed that our approximation is valid well beyond the for-
mal ranges of validity. One of the reasons is that for two of

the survival probabilities P1→1 and P3→3, our LZ approxima-
tion produces the exact results. We have found that even in
the extreme case of vanishing static detuning, where our ap-
proach should not be valid because the three crossings coa-
lesce into a triply degenerate bowtie single crossing, it still
produces remarkably accurate results because of nearly cor-
rect asymptotic behaviors of the transition probabilities.

One of the useful and interesting features of the “triangle”
linkage pattern �Fig. 1� is the presence of intrinsic interfer-
ence effects. Our “sandwich” approach, with its implemen-
tation in the adiabatic interaction representation, allows for
an easy incorporation of different evolution paths in Hilbert
space between a particular pair of states. Such path interfer-
ences are identified in only four of the nine probabilities.
Another source of interferences could be nonadiabatic tran-
sitions in the wings of the driving pulses, where the nonadia-
batic couplings possess local maxima; these interferences
would be visible in all nine probabilities. We have found,
however, that only the path interferences are clearly identi-
fied.

A substantial contribution to the path interferences is
played by the LZ phases 
�. The LZ phase is often neglected
in applications of the LZ model to multiple crossings, in the
so-called “independent crossing” approximation, where only
probabilities are accounted for. Although such an approach
occasionally works, miraculously, as in the exactly soluble
Demkov-Osherov �13� and Demkov-Ostrovsky �9� models,
the present simple, but very instructive model, demonstrates
that in general, the LZ phase, as well the dynamical adiabatic
phases, has to be properly accounted for, which is achieved
best in an evolution-matrix approach, preferably in the
adiabatic-interaction representation �32�.

In order to be closer to experimental reality, in the ex-
amples we have assumed pulsed interactions, specifically of
Gaussian time dependence. This proved to be no hindrance
for the accuracy of the model, which is remarkable because
we have applied the LZ model �which presumes constant
couplings� at crossings �the first and the last ones� situated at
the wings of the Gaussian-shaped couplings where the latter
change rapidly. This robustness of the approach can be traced
to the use of the adiabatic basis where the pulse-shape details
are accounted for in the adiabatic phases.

We have used the analytic results to derive some useful
features of the dynamics, for instance, we have found explic-
itly the parameter values for which certain probabilities reach
the 50% level, and for which a maximally coherent superpo-
sition is created of all three states P1= P2= P3=1 /3.

In the specific derivations we have assumed for the sake
of simplicity equal couplings for the two transitions and
slopes of different signs but equal magnitudes for two of the
energies. These assumptions simplify considerably the ensu-
ing expressions for the probabilities; moreover, they are ac-
tually present in some important applications �quantum ro-
tors, Zeeman sublevels in magnetic field and spin-spin
entanglement�. The formalism is readily extended to the gen-
eral case, of unequal couplings and different slopes, and we
have verified that the resulting LZ-based approximation is
very accurate again. To conclude, the present work demon-
strates that, once again, the LZ model outperforms expecta-
tions when applied to multistate dynamics, with multiple
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level crossings and a multitude of evolution paths.
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